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SUMMARY 
The method consists in integrating the Orr-Sommerfeld equation in the direction from the free stream toward 
the wall. In order to satisfy the boundary conditions at the wall, two linearly independent solutions have to 
be found. To prevent numerical solutions from becoming linearly dependent, the method of order reduction 
instead of repeated orthogonalization has been used. The method has been applied to calculate the neutral 
curve for the Blasius profile. 

1. Introduction 

The Orr-Sommerfeld equation governs the stability of  a two-dimensional incompressible lami- 
nar parallel flow with respect to infinitesimal two-dimensional disturbances. In the past a 

number o f  methods has been presented to calculate eigenvalues and eigenfunctions of  the 
Orr-Sommerfeld equation. Osborne [ 1 ] and Jordinson [2] replaced the differential equation by a 

set of  difference equations which leads to a matrix eigenvalue problem. This allows to calculate 

several eigenvalues but the accuracy is limited. Orszag [3] used expansions in the Chebyshev 

polynomials and the QR matrix eigenvalue algorithm. Mack [4] and Monkewitz [5] integrate 

the two decreasing solutions of  the Orr-Sommerfeld equation from some large value of  the 

independent variable y to the wall y = 0. In order to prevent that the two solutions, which 
increase in the direction o f  integration, become linearly dependent, Mack uses a Gram-Schmidt 

orthonormalization procedure and Monkewitz a pseudo-orthogonalization method. However, 
these have to be applied several times during the integration process. 

In the present paper a method is presented which also integrates the differential equation 

from a large value o f y  to y = 0 but which avoids the repeated orthogonalization. It is based 
upon the method of  order reduction, see [6], which originally is due to d'Alembert. If  ~01 is the 
solution which increases most strongly in the direction of  integration, a second solution is 

obtained by putting ~0 = ~0~ which leads to a differential equation for ~ of  an order, one lower 
than that of  the original equation for ~b. Application of  the method of  order reduction to a 
(differen 0 numerical problem has been performed by Should [7]. This was brought to the 
attention o f  the authors by Prof. J. H. Ferziger from Stanford University. 

Although the Orr-Sommerfeld equation is derived for parallel flow, it has frequently been 
applied for investigating the stability o f  the Blasius boundary layer profde.This will also be 
done in the present paper, but it is intended to consider later the influence of  the non-parallel- 
lity o f  the flow (see also Barry and Ross [8] and Saric and Nayfeh [9]). 
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Results are presented for the neutral stability curve in the R,a-plane, where R is the Rey- 
nolds number and ~' the wave number, both made dimensionless by aid of the displacement 
thickness 5" of  the boundary layer. The lowest Reynolds number at which the Blasius bound- 
ary layer becomes unstable is 519.060. The method can also be used to calculate for given R 
and ~" the damping of the oscillation. This has been performed for a standard case which also 
was considered in [2], [4] and by Grosch and Salwen [10]. Results are in excellent agreement. 

2. The Orr-Sommerfe ld  equat ion  

A flat plate is assumed to lie in the plane y = 0 with its leading edge along the z-axis. The plate 
is placed in a uniform stream of velocity U*~, parallel to the plate and in the direction of the 
x-axis, x , y ,  z is a Cartesian system of axes. Physical quantities are made dimensionless by aid of 
the free stream velocity U*~ and the length 

L* = | / - ~ *  
V tY*~ ' 

where v* is the kinematic viscosity. Asterisks refer to dimensional quantities. The Reynolds 
number is defined as 

U*~L* 
R =  

p $  

The displacement thickness becomes 6* = /3L*, where ~3 = 1.7207876573. The perturbation 
stream function is assumed to be given by the real part of the expression. 

O/(x, y, t) = ~o(y)e ia(x-ct) ,  (1) 

where ~ v )  is a complex amplitude, a = a ' L *  the wave number, c = c*/U*~ the wave velocity 
andy =y*[L* the dimensionless independent variable. 

With these assumptions the Orr-Sommerfeld equation becomes, see [ 11 ], 

L (~0 TM __ 2 a 2 ¢ "  + a4~o) + ( U  - c)  (~o" - a 2 ¢ )  - U" ~ = 0,  
aR 

(2) 

where U(y) is the x-component of the velocity in the boundary layer (Blasius profde) and a 
prime denotes differentiation toy .  The boundary conditions corresponding to (2) are 

wall: ~(0) = ~'(0) = 0, 

free stream lim ~00') = lim ~0'0') = 0. 
y---} ~ y--.oo 

(3) 
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The last condition excludes the continuous spectrum [10]. In this paper we are only interested 

in discrete eigenvalues with their eigenfunctions. 
The homogeneous differential equation (2) with the homogeneous boundary conditions (3) 

defines an eigenvalue problem for the parameter c when a and R are given. In general, the 

eigenvalue c will be complex, c = c r + ic r 

If  a is real, the perturbation (1) remains of constant amplitude in x-direction, but will 

increase with time if c i > 0 and decrease i f c  i < 0. This is called the temporal stability problem. 
If  the frequency 60 = ac is real, the perturbation will be of constant amplitude in time, but 

will decrease or increase in x-direction. This is the spatial stability problem, leading to complex 

values of both ¢~ and c. 
A point of  the neutral curve in the (R,a)-diagram is obtained if for real a also c becomes 

real. In that case the temporal and spatial problems lead to the same solution. The relation 
between the solutions of  the two problems, if a and 60 are not both real, is stated by Gaster 

[12]. 
We now consider the asympto t i c  b e h a v i o u r f o r y - + ~  of the solutions of the Orr-Sommerfeld 

equation. Since fo ry  -* ~ the Blasius profile satisfies 

vty)-~ 1, v'%v)-~ 0, 

eq. (2) becomes 

( ¢ I v _  2t~2¢,, +a4¢)  + (1 - c) (~" - a2~) = 0, 
aR 

(4) 

which is a linear equation with constant coefficients. The four independent solutions of (2) are 

asymptotic to the solutions of (4): 

~ j ( y ) ~ e x p ( ~ l y )  as y - ~ , ,  ] =  1,2,3,4. 

)k1,2 = -T- 7 ,  ~k3,4 = -T- a, 7 =~/a2 + i a R ( 1  -- c), R e T > O .  

(5) 

Solutions 1 and 2 are the ~iscous' solutions, while 3 and 4 are 'inviscid' solutions. Only the 
solutions 1 and 3 satisfy the boundary conditions (3) at infinity. Hence, the eigenfunctions of 
the eigenvalue problem (2), (3) will be linear combinations of the solutions 1 and 3. The 
eigenvalue problem reduces to f'mding such values of c for which a linear combination of the 
solutions 1 and 3 satisfies the two boundary conditions (3) at the wall. 

3. Numerical solution of the Orr-Sommedeld equation 

The numerical method to solve the Orr-Sommerfeld equation (2) is a direct integration method. 
It is a shooting procedure, starting at some large value y = y t and integrating toward y = 0. We 
consider the temporal stability problem, that is a will be taken real. Two of the four parameters 
R ,  a, c r and c i will be given fixed values, while the two others are given trial values. The final 
values of the two last parameters have to be determined by the shooting process. 

Journal o f  Engineering Math., Vol. 14 (1980) 17-26 



20 Th. L. van Sti]n and A. L van de Vooren 

The integration procedure is applied in order to obtain the solutions ~01 and ~oa. Initial 
conditions at y = y ~ are 

(¢ , ,  ~o'l, ~o~', ~ " )  = (1, - %  3'2, _3'3) e - . r y , ,  

H 
(~O 3 , ~ ,  ~03, ~O~') = (1, --a, ct 2 , - a  3) e - a y  , . 

(6) 

The difficulty with this integration is that at smaller values of  y the two solutions tend to 
become linearly dependent. This is exactly the reason that an orthogonalization process has 
been applied in [4] and [5]. 

To circumvent the difficulty of  linear dependence of the solutions we use the method o f  

order reduction. Assume that by integration we have obtained ~ ,  which is the solution in- 
creasing fastest (Re 3" > a) in the direction of decreasingy. We then put 

~3 = # ~, (7) 

and substitute this in eq. (2). This results in the following differential equation for qJ 

q01 ~IV + 4~F1 ~ ' "  + (6~'1' -- 2a2¢1) ~ "  -- i a R  ( U -  c)~1 ~F, 

+ 4(~0'1"-- 2 ' ~b' ~Ol) -- 2 i a R ( U -  C)~O'l q /  = O. (8) 

It is seen that  ~b = constant is a trivial solution of this equation, which corresponds to ¢~ being 
a solution of  the original homogeneous equation (2). 

In fact, (8) is a third order differential equation for ~k'. The initial conditions a t y  =y~ for 
~k' and its derivatives follow from (6) as 

(~b', ~b", ~k'") = { 1 , 3 ' - - %  ( 3 ' -  a)2}e('r-c*)Y~ 

Since 3' is complex while a is real, it follows from (5) that asymptotically ~o~ is an oscillating 
and ~oa a monotonous function. It  turns out that the oscillations in ~o~ continue over the whole 
range of  integration while oscillations are absent in ~oa. This means that the integration of both 
eq. (2) and eq. (8) produces oscillating functions and that the oscillations cancel when calcu- 
lating ~a. The oscillations can be avoided, which allows larger steps to be taken in the integra- 
tion process for the same accuracy, by the following modification. Put 

qol = r /71,  (9) 

where r/ = e uy = e - t T i  y and 3' = 3'r + i3'i. Then 71 does not have the strongly oscillating 
character o f  ~ l .  The Orr-Sommerfeld equation written in terms of 7 is 

7 TM + 4~7" '  + (6/z 2 - 2 a 2 ) 7  ' '  - i a R ( U "  c ) 7 "  + 41aOa 2 - a 2 ) 7  ' + 

- ~ u a R ( U -  c ) 7 '  + [U 4 - 2 ~ U  2 + a 4 - i ~ R ( U -  c )  (V ~ - c~ 2)  + 

+ i a R U " ] 7 =  O. 

(10) 
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The initial condition at y = y i is 

( ~ 1  , ~ t  2 3 - -  ") 'rY ~ , ~ o l , ' ~ ' ; , 7 ' ~ ' ) = ( 1 , _ T r , ~ / r , - - T r ) e  . (11) 

In order to eliminate the oscillation in 4, we put 

¢' -- 7 -1 ~ ' .  (12) 

Substituting this and (9) in eq. (8), we obtain the following differential equation for qJ' 

7t ~'IV + (47~I +/271.) ~"',' + {6~" t --I- 4/a~"i + (p2 _ 2a2)~" } ~,, + 

+ ~47';'+ 6~'~'; + 40: -~ ):i +~Oa ~ - 2o:)7~ ~ ~' + 

- i~(v-O ~1 ~"' + (2~'i +~i)~"> = 0 

(13) 

with the initial condition at y = y 1 

(~ ' ,  ~"", ~,,,) = ~ l ,  ~lr - ot, ('y r - a ) 2  } e ( ~ , - ~ ) Y ,  , 

In the integration of eqs. (10) and (13) we need the Blasius boundary layer profile U(W). This 
can be obtained by integrating the Blasius equation 

~ f " '  + f f "  = 0 

with the boundary condit ions/(0) = f ' (0 )  = 0 and lim f '~v) = 1. In fact, this equation is 
y---~ oo 

integrated as an initial problem starting with 

f (0 )  = f ' ( 0 )  = 0. f"(0)--- 0.33205733622 

in which case f ' ( ~ )  will become equal to 1. Then 

U 0 , ) = f ' ( y )  and U"(v )=y" ' (v ) .  

The value of  y l  has been taken equal to 13, since then U0q)  and U"(y~) deviate less than 10 -9 
from the asymptotic values 1 and 0. Values of U(v) and U " ( y )  with a step length of 0.05 are 
retained in the memory. Intermediate values, required for the integration of eqs. (10) and (13), 
are obtained by Hermite ~nterpolafion, which gives an error everywhere smaller than 10 -9 . 

Integration of eqs. (10) and (13) corresponds to the integration of a system of 14 real 
first-order differential equations. The integration of this system has been performed by aid of 
the variable-stepsize, variable-order Adams-Bashforth-Moulton method DE, written by Sham. 
pine and Gordon [13]. Some results have been checked with the 7 th order variable stepsize inte- 
grator written by Fehlberg* [ 14]. There was complete agreement within the required accuracy. 

* In Table 2 of [14]/~h for r = 12, h = 4 should read 4496. 
1025 
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4. Determination of the eigenvalue 

The method has first been tried out on the standard case R = 998, ~'= 0.308 where R = R/3 and 

~ =  o~ with ~ given in Sec. 2. The parameters c r and  c i have then to be determined by shooting. 
The purpose of  the shooting is to find such linear combination of the solutions ~01 and ~oa that 
the two boundary conditions (3) at the wall are satisfied. Using (7) this means that 

A , ,  (0) + B¢(0)~1 (0) = O, 

A~o', (0) + Bq/(O)¢, (0) + B¢(O)¢', (0) = O. 
(14) 

This system has only a significant solution for A / B  if its determinant vanishes. Since ~01 (0) 
never vanishes, as ~01 is the solution that strongly increases with decreasingy, the determinant 
only vanishes if ~k'(0) = 0. Since ~7 = 1 fo ry  = 0 this leads, using (12), to the shooting criterion 

~"(0) = 0. (15) 

A Newton-Raphson procedure is followed to determine such c r and c i that this criterion is 
satisfied. I f  ~k' (0) :/: 0 for trial values of c r and c i ,  corrections Acr and Ac i are applied, resulting 
from 

~'(o) + ~ ,  a ~"(o) a ~'(o) 
+ Ac i ~ = 0. (16) 

~¢r aCi 

Since ~ '  (0) is a complex quantity, this gives two equations allowing the determination of both 

c r and q .  The derivatives of ~" (0) to c r and c i must be calculated by repeating the integration of 
eqs. (10) and (13) with values of c r and q slightly varied from the original trial values. 

After having determined improved values of c r a n d  c i by aid of (16), the process is repeated. 
Once a fairly good approximation to the solution has been found, it may become superfluous 

to calculate new values of  the derivatives at every step. 
The result for the standard case is 

R =  998, ~'= 0.308, c r = 0.36412129, c i = 0.00796250. 

As a check, the adjoint to the Orr-Sommerfeld equation 

i (~oi v 2 o t 2 ~ p , , + o ~ 4 o ) + ( U _ c ) ( ~ p , , o t 2 ~ o ) + 2 U , p , = O  - 

has been dealt with in the same way as described in Sec. 3 for the original Orr-Sommerfeld 
equation. This led to exactly the same eigen~lue c. 

In order to calculate the n e u t r a l  c u r v e ,  R or ~" is given a fixed value, while c i is taken equal 
to 0. By the Newton-Raphsonprocedure the other parameters ~" or R and c r are determined. 
Which of  the two parameters R or ~'is taken as fixed parameter depends on the direction of the 
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tangent to the neutral curve. If  the curve runs more in the direction of  the ~-axis (small R)  ~ ' i s .  

taken as fixed parameter, while in the remaining part R i s  the fixed parameter. 

Results for the neutral curve are given in Table 1 and Figs. 1 and 2. 

TABLE 1. 

Values o f  R, ~ and c r for points on the neutral curve. 

~" Cr 

10000.0000 0.06609819 0.18513238 
3000.0000 0.10279770 0.24595028 
2850.0000 0.10494983 0.24897783 
2700.0000 0.10729132 0.25221520 
2550.0000 0.10985237 0.25569052 
2400.0000 0.11267043 0.25943773 
2250.0000 0.11579262 0.26349829 
2100.0000 0.11927919 0.26792358 
1950.0000 0.12320866 0.27277817 
1800.0000 0.12768569 0.27814480 
1650.0000 0.13285351 0.28413168 
1500.0000 0.13891453 0.29088406 
1350.0000 0.14616646 0.29860301 
1200.0000 0.15507038 0.30757824 
1050.0000 0.16639135 0.31824962 
987.9028 0.17207877 0.32331823 
900.0000 0.18153267 0.33133691 
734.2099 0.20649452 0.35025830 
602.5375 0.24091027 0.37152551 
536.5508 0.27532603 0.38757560 
519.9570 0.30974178 0.39796245 
584.5108 0.34415753 0.39896246 
688.3151 0.35469717 0.39205508 
750.0000 0.35615632 0.38771377 
860.3938 0.35533729 0.38033325 
900.0000 0.35444914 0.37784404 

1050.0000 0.34972752 0.36917793 
1200.0000 0.34404688 0.36158668 
1350.0000 0.33815367 0.35488200 
1500.0000 0.33235298 0.34890295 
1650.0000 0.32677235 0.34352237 
1800.0000 0.32146053 0.33864094 
1950.0000 0.31642967 0.33418066 
2100.0000 0.31167443 0.33007967 
2250.0000 0.30718154 0.32628824 
2400.0000 0.30293445 0.32276594 
2550.0000 0.29891569 0.31947953 
2700.0000 0.29510816 0.31640140 
2850.0000 0.29149562 0.31350838 
3000.0000 0.28806302 0.31078087 

10000.0000 0.21217669 0.25191105 
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Figure 1. 
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The neutral curve for the wave number ~" as a function of/~ for the Blasius boundary-layer flow. 
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Figure 2. The neutral curve for the wave velocity c r as a function of/~ for the Blasius boundary-layer flow. 

5. Determination of the eigenfunction 

For  t he  s tandard case and for  some points  o f  the neutral  curve the e igenfunct ion  has also been 

determined.  

The e igenfunc t ion  is given by 

~o0,) = A~o, 0') + B e ,  O,). 

The ratio A/B follows from the determinant of the system (14) to be equal to - ~  (0). Using 
also (7), we fred 
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~ y )  = ¢,~) {~(y )  - ¢(0)} = ~,~) f: ~ ' ( t ) d t  

or, with (9) and (12) 

ry 
~(y) = n(v)7,~v) Jo i 

Introduce v ( y ) - - f :  ~"( t)  
r/(t) 

5' 
o ' = -  with v (0 )=  0. 

7/ 

~'(t) dt. (17) 
n(t) 

dt, then v satisfies the differential equation 

However, integration of  this differential equation simultaneously with eq. (13), that is in the 
direction of  decreasing y ,  does not lead to correct values of  v. The solution v = C of  the homo- 
geneous equation makes that  errors in i f '  remain of  the same magnitude during the integration 
procedure. Since ~b' is a rapidly decreasing function toward smaller values of  y ,  this spoils the 

accuracy. The remedy is to divide the integration interval into N small subintervals O'l. 1 ,Yi), 
i = 1, 2 ... . .  N and calculate for each subinterval 

si = v O ' i )  - v t y i _  1) ,  

d -  

g I l t i G I I l i ~  
m 

I- 

.~_ 
lJ- 

a 
d -  

a_ 

10 ~ .m .~ ,m ,M t0m 
E I ~  FldlC~'tl~ ;0 

Figure 3. 

I l .m  

The eigenfunction ~00') for the case/~ = 998 and ~'= 0.308. 

Journal of Engineering Math., Vol. 14 (1980) 17-26 



26 Th. L. van Stijn and A. L van de Vooren 

which is done simultaneously with the integration of eqs. (10) and (13). The results for s i are 
stored in the memory and after having calculated them all, we find 

i 
v(yi)=kZ=l Sk, i = 1 , 2  ..... N.  

Finally, from eq. (17) the eigenfunction becomes 

¢(v) = nO') 7109 vO,). 

The eigenfunction for the standard case (R = 998, ~'= 0.308) is given in Fig. 3. Eigenfunctions 
for points of the neutral curve are qualitatively identical, the main difference being in the 
asymptotic approach to 0 for y ~ 0% which is slower for smaller ~. 
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